Predicting the multi-domain progression of Parkinson’s disease: a Bayesian multivariate generalized linear mixed-effect model

Publication
BMC Medical Research Methodology
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.

Abstract

Background

It is challenging for current statistical models to predict clinical progression of Parkinson’s disease (PD) because of the involvement of multi-domains and longitudinal data.

Methods

Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve.

Results

First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals.

Conclusions

Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD.